
Dimensionality Reduction 

PCA Explained Variance

• ~90% of variance in data explained 
with only top 30 Eigen vectors

• Eigen vectors with largest Eigen 
values tend to represent lower 
frequency features in images 
(general shape of defects), while 
smallest represent fine details

• Principal component analysis (PCA) first used for dimensionality reduction 
bringing image dimensionality from 50,176 dimensions (224x224 image) 
to 30 top eigenvectors (D=30)

• Dimensionality reduction is important to perform before K-means 
clustering so that instances within clusters are more visually similar (small 
differences in large feature space result in very large Euclidian distances)
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Convolutional Neural Networks (CNN)

• Each convolutional “layer” is made up of several ”residual blocks”
• Last “dense” layer replaced to predict 3 defect classes

• ResNet is a deep convolutional neural network used for image classification, 
last layer replaced to classify defects as either drill-hole, debris, or pit

• Image pre-processing
1. Image snippets of defects first cropped out of 4PI topography by X
2. Center-cropped/scaled to fit ResNet input size of (224x224)
3. Images Z-score normalized to zero mean and unit variance

ResNet-34 CNN Architecture

Transfer-Learning and Hyper-parameter Optimization 

Transfer-learning/Hyper-parameter optimization workflow

• Entire network fine-tuned through hyper-parameter optimization, randomly 
sampling following network hyper parameters and data augmentation 
strategies:

1. Number of ResNet layers (18, 34, 50,101, 152)
2. Data Augmentation: (random crop, rotation, horizontal/vertical flip, 

scaling, brightness, contrast, blur)
3. SGD hyper-parameters: learning rate, momentum, regularization

• ResNet models (ResNet18, ResNet101, etc.) are first pre-trained on 
ImageNet (large scale image classification dataset of over 1 million 
images)

• Last layers fine-tuned on topography images using pretrained back bone 
as feature extractor

• Hyper-parameter optimization process trained over 5,000 variations to 
select best performing model for production

Results 
• Best model was ResNet101 able to achieve high performance of 95% 

accuracy on production test data using transfer learning and hyper 
parameter optimization

• Achieved 90% accuracy on important subset of data with largest defects
• Unsupervised learning able to assist in finding rare instances of “drill-hole” 

class and discovered error in preprocessing of data

Unsupervised-Learning

“Background” cluster 
center

• Visual Inspection of 
cluster center 
appeared to be “blank 
background Images”

• Thousands of unlabeled images after PCA are input to K-means 
(unsupervised) learning algorithm to group image instances into similar 
categories (clusters)

• “Elbow method” as well as visual inspection used to decide number of K-
means clusters

• Final cluster centers and random instances of each cluster are visually 
inspected to determine “class” it best represents. Grouped into “drill hole”, 
“debris”, ”pits” or “other”

• ”Semi-supervised” class labels are manually sifted through by expert to 
remove incorrectly classified instances

Motivation and Process Overview 

Topography Snippets

• Defect snippets 
extracted from image 
topography

• Used as input to model

• Defects and impurities in high-density carbon (HDC) shells can impact 
implosion symmetry, hydrodynamic instabilities, and X-ray radiation 
transport, leading to a decrease in the yield of inertial confinement 
fusion (ICF).

Future Work
• Use trained model for “assisted-labeling” for more training 

data and use active learning in efficient data selection
• Replace image classification model with object detector

Processing Error

• Instances of cluster 
center discovered a 
processing error in 
data collection.

Drill hole cluster 
center

• Example cluster 
center corresponding 
to desired drill hole 
class

• Some cluster centers appeared to be “blank”, upon inspection of cluster 
instances it discovered a pre-processing error during data collection

Full Test Set

• Confusion Matrix shows 
most errors are debris 
being mistaken for pits

• Achieves 95% overall 
accuracy

Defects > 10µ3

• For the category we 
care about detecting 
correctly the most (large 
defects) it performs at 
90% accuracy

Defects < 3µ3

• Smaller defects are less 
impactful on implosion 
mechanics, while also 
being harder to classify 
at 84% accuracy.

Residual Block

• Each residual block has 
skip connections to 
reduce exploding and 
vanishing gradients

Model Adaptation

• Replacement of 
FC1000 with FC3

Surface Topography

• Fringe patterns used 
to create topography 
images

Image Reconstructions

• Demonstration of trade off between 
representation of fine details in 
image reconstruction vs. number of 
dimensions

D=10

D=1000

4PI System Setup

• High Resolution 
system used to find 
capsule defects.

4PI Station

• Machine learning models integrated into 4PI station 
automatically analyzing quality of shells.


